Lycée secondaire Ibn Khaldoun Rades Classe : 2ème S₅

Devoir de contrôle n°2 Mathématiques

Année Scolaire 2010–2011 Durée : 1h

Exercice n°1: (4 points)

Répondre par vrai ou faux pour chacune des questions suivantes. Indiquer sur la copie le numéro de la question correspondant à la réponse choisie. **Aucune justification n'est demandée**.

- 1) ABC est un triangle, G le centre de gravité et J le milieu de [AC]. Alors $\overrightarrow{GA} + \overrightarrow{GB} = \overrightarrow{GC}$
- 2) Dans un repère (O, \vec{i}, \vec{j}) , les points M et N vérifient : $\overline{OM} = -2\vec{i} + 3\vec{j}$ et $\overline{ON} = \vec{i} \frac{3}{2}\vec{j}$

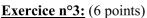
Les coordonnées du milieu de [MN] sont $\left(-\frac{1}{2}, \frac{3}{4}\right)$.

- 3) Si I est le milieu de [AB], alors pour tout point M du plan on a : $\overline{MI} = \overline{MA} + \overline{MB}$.
- 4) Dans un repère (O, \vec{i}, \vec{j}) , on a : $\vec{u} = 3\vec{i} 4\vec{j}$ et $\vec{v} = 2\vec{i} + 9\vec{j}$ on pose $\vec{w} = 4\vec{u} \vec{v}$.

Les composantes de \vec{w} sont $\begin{pmatrix} 10 \\ -25 \end{pmatrix}$.

Exercice n°2: (3 Points)

Donner les composantes dans la base (\vec{i}, \vec{j}) des vecteurs $\vec{j}, \vec{u}, \vec{v}, \vec{w}, \vec{x}$ et \vec{y} représentés ci-contre.



Soit
$$P(x) = x^4 - 5x^3 - 23x^2 + 45x + 126$$

- 1) Montrer que 7 et (-2) sont deux zéros du polynôme P.
- 2) Déterminer un polynôme Q tel que pour tout réel x, on a

$$P(x) = (x-7)(x+2)Q(x)$$

- 3) a) Résoudre dans IR l'équation Q(x) = 0.
- b) Résoudre dans IR l'inéquation P(x) > 0.

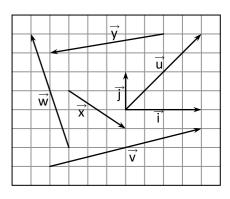
Exercice n°4: (7 points)

Soit (O, \vec{i}, \vec{j}) un repère orthonormé du plan, on considère les

points
$$A(2,0)$$
, $B(4,2)$ et $C(-1,3)$

- 1) Montrer que les points A, B et C ne sont pas alignés.
- 2) Les droites (AB) et (AC) sont-ils perpendiculaires ? Justifier.
- 3) Déterminer les coordonnées des points suivants :
- G le centre de gravité du triangle ABC.
- Le point F pour que AFBC soit un parallélogramme.
- 4) Soit le vecteur $\vec{u} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ dans la base $\left(\overrightarrow{AB}, \overrightarrow{AC} \right)$. Déterminer les composantes

du vecteur \vec{u} dans la base (\vec{i}, \vec{j}) . puis calculer $\|\vec{u}\|$ dans la base (\vec{i}, \vec{j}) .



Bon Travail

